

Developing Energy Materials for a Net Zero Future

ASX: VLX (proposed)

T S X V : **V L X**

MARCH 2024

Forward-Looking Statement

Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this Presentation.

"This Presentation includes certain forward-looking statements or information. All statements other than statements of historical fact included in this release, including, without limitation, statements relating to the potential mineralization and geological merits of the and properties and other future plans, objectives or expectations of the Company are forward-looking statements that involve various risks and uncertainties.

There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements. Important factors that could cause actual results to differ materially from the Company's plans or expectations include risks relating to the actual results of current exploration activities, fluctuating gold prices, possibility of equipment breakdowns and delays, exploration cost overruns, availability of capital and financing, general economic, market or business conditions, regulatory changes, timeliness of government or regulatory approvals and other risks detailed herein and from time to time in the filings made by the Company with securities regulators.

The Company expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events or otherwise except as otherwise required by applicable securities legislation."

The planning, execution and monitoring of quality control programs on the Company's projects are under the supervision of Michael Griffiths, BSc Dip Ed, FAusIMM, GAICD, Velox's VP Exploration. Mr. Griffiths is the qualified person as defined by National Instrument 43-101. Velox utilizes an industry standard QA/QC protocol with respect to sampling procedures. Blanks and certified reference standards are inserted into the sample stream to monitor laboratory performance and duplicates of pulps and bulk rejects are also used to monitor laboratory performance. Mr. Griffiths has reviewed and approved the contents of this Presentation.

Additional information and public documents about Velox can be viewed at the Company's website www.veloxenergymaterials.com.au or at www.sedar.com

Corporate Snapshot

VLX

254.5M

Shares

TSX-V ticker ASX ticker - proposed

66.34M

Warrants (C\$0.05-C\$0.10, Jan-Dec '25)

22.4M

Employee Options (C\$0.05-C\$0.125, Feb '24 – Jan '29)

\$0.10 \$0.08 \$0.06 \$0.04 \$0.02 \$-01-Mar-23 01-May-23 01-Jul-23 01-Sep-23 01-Nov-23 01-Jan-24 01-N

VLX Share Price Performance

C\$11.4M

Market Cap (as at 1 March 2024)

C\$2.08M

Cash (as at 31 December 2023 unaudited)

Leadership Team

Board of Directors

Simon Coyle President & CEO

Extensive experience in operational management positions across gold, iron ore, manganese and lithium

Former Head of Port and Operational Development, and General Manager of Operations for Pilbara Minerals' hard-rock lithium operation, Pilgangoora

Successfully led the development and expansion of the Pilgangoora operation to become a major producer of spodumene concentrate

Mark Connelly Non-Executive Director

Extensive experience and involvement in exploration, development and mining projects, including

- merger of Papillon Resources with B2 Gold Corp, and
- merger of Adamus Resources with Endeavour Mining

Currently Non-Executive Chairman and Non-Executive Director across multiple ASX listed mining companies

Nicole Morcombe Non-Executive Director

Finance professional with a background in economics, finance and accounting with over 15 years experience in financial markets

Extensive advisory and capital markets experience specialising in the Global Materials and Energy sectors identifying, advising and financing early-stage and predevelopment companies

Co-founder of Kotai Energy

Mike Griffiths Non-Executive Director, VP Exploration

Qualified geologist, Fellow of AusIMM, and a graduate of the Australian Institute of Company Directors

Over 35 years of experience covering all facets of the minerals and energy sector

20 years' experience in Africa with roles ranging from Geologist to Managing Director of a producing copper company

Management

Silfia Morton Chief Financial Officer

Chartered Accountant with a Masters Degree in Commerce

Specialising in financial management, financial reporting and risk compliance and management

Chief Financial Officer and Company Secretary for a number of ASX listed and unlisted public companies

Karien Slabbert Company Secretary

Over 14 years' experience in the legal industry, with a background in litigation, commercial and corporate law

Strong business acumen and skills ranging from risk management, compliance, strategy development and sound corporate governance practices

Experience working with regulators and boards of both listed and unlisted companies

Leading Energy Materials Projects within Velox

VANADIUM

- Large NI 43-101 Mineral Resource of 206.2Mt @ 0.33% V₂O₅ Contiguous shallow orebody
- Targeting the development of a low-cost, low strip ratio operation
- Underexplored 1,246km² tenement package with favourable geology

HYDROGEN

- Developing a green closed loop circuit for hydrogen regeneration
- High-pressure release of hydrogen without mechanical compression
- Led by world renowned Hydrogen Storage experts at Curtin University

LITHIUM

- Multiple pegmatites identified in historic drilling, never assayed for lithium
- Located in Quebec, one of the best lithium addresses globally
- Existing and accessible infrastructure

Lake Pierre Lithium Project Quebec, Canada

> North Queensland Vanadium Project Queensland, Australia

> > Head Office Perth, Australia

> > > Kotai Hydrogen Project Perth, Australia

Velox is focused on developing energy materials for storage solutions that will enable the transition to

net zero.

Vanadium A Critical Mineral for Grid Power Storage

North Queensland Vanadium Project is a large scale 100%-owned Vanadium project targeting low-cost production in Queensland's North West Minerals Province

North Queensland Vanadium Project (NQVP)

Significant Existing Mineral Resources

- NI 43-101 compliant Cambridge Vanadium Mineral Resource:
- + 61.33 Mt @ 0.34% V_2O_5 Indicated
- 144.87 Mt @ 0.33% V₂O₅ Inferred
- 206.2 Mt @ 0.33% V₂O₅ Total

Targeting Low-cost, Low Strip Ratio Production

- Oxide mineralisation is shallow dipping, outcropping within oxide profile
- Targeting development of a low strip ratio (<1:1) free dig operation
- Significant OPEX and CAPEX **cost advantage** over hardrock magnetite deposits

Premier Location

 Mid-way between Mt Isa and the Port of Townsville with access to rail, road, power and port. Townsville is planned to become a vanadium beneficiation hub

- Large holding comprising **1,246km**² with only **~15%** of total holding having been explored
- · Mineralisation is concentrated within the Toolebuc Formation sediments
- Targeting high-grade mineralisation at Flinders River, Runnymede & Silver Hills
- Potential for economic secondary commodities, Mo and REE

Regional Overview

Resource and Advanced Prospects

- Cambridge Mineral Resource
 - Recently drilled with results pending
- Flinders River Exploration Target open to the north, south and east
- Runnymede Prospect historic drilling confirmed

Regional

- · Silver Hills Prospect wide spaced historic drill data
- Over 76km of mapped Toolebuc Fm vanadium host rock
- Over 300km² of Toolebuc outcrop
- 100km² Toolebuc Fm in Runnymede undrilled

Established Mineral Resources in Area

- Cambridge Vanadium Oxide Deposit 206.2 Mt @ 0.33% V₂O₅
- Lilyvale Vanadium Oxide Deposit 560 Mt @ 0.48% V₂O₅
- Rothbury Vanadium Oxide Deposit 1.2 Bt @ 0.31% V₂O₅
- Debella Vanadium Oxide Deposit 175.2 Mt @ 0.44% V₂O₅

Cambridge Vanadium Deposit – Shallow, gently dipping oxide material

- Mineralisation outcrops on northern edge and dips shallowly to the south
- Mineralised zone generally contains a **higher-grade middle layer** with grades including:
 - MAC015 2m @ 1.0% V₂O₅ from 10m
 - MAC012 3m @ 0.62% V₂O₅ from 7m
- Focus will be optimising a mine development plan with low (<1:1) strip ratio and **higher average grade**

Low strip ratio focus area

August 2023 Drill Program -Cambridge Vanadium Deposit

Recent Activity – 100mm Core

Ten-hole, multi-use program completed to provide sufficient sample for:

- Baseline metallurgical testwork, to enable flow sheet design
- Overburden and footwall studies
- Additional multi-element data
- Basic geotechnical data for mining studies
- Comprehensive stratigraphic data from detailed geological logging
- Downhole geophysical gamma and density logging
- Detailed mineralogy studies
- Water monitoring

Expected Outcomes

The drill results will be used to inform the following:

- Optimising a low-strip ratio mine plan
- Focus on the **higher grade** middle layer, targeting >0.45% V_2O_5

Vanadium Project Timeline

TSXV:VLX

11

The Potential of Vanadium & Vanadium Redox Flow Batteries (VRFBs)

Elevated by governments as a **critical mineral** with an essential function in energy technologies

VRFB grid scale electricity storage and complimentary to large renewables

Store and discharge energy on an industrial scale. Deep duration storage and complete drain

Long Life span +20 years. Recycled and restorable

Safe and nonflammable

Queensland Government is accelerating the development of the Vanadium Industry

Queensland Government Capitalising on New Economy Minerals

Common User Demonstration Facility

- \$75m committed
- Industrial hub to trial production and support the development and extraction of Critical Minerals
- First Priority Vanadium

Copperstring 2032

- \$5bn investment
- A 1,100 km high-voltage electricity transmission line
- Provides energy certainty to the region's burgeoning critical minerals sector

Battery Manufacturing Facility

- Funding provided through the Industry Partnership Program
- Australia's first commercial vanadium flow battery electrolyte facility
- Nameplate production of 9 megalitres of electrolyte per annum

National Battery Testing Centre

- \$15m invested, leveraging to total \$50m
- · An essential part of ramping up battery manufacturing in Queensland
- Ensure the state is a significant part of the supply chain domestically and internationally

Source: Guidehouse Insights

Kotai Hydrogen Project

Partnering with hydrogen storage experts for the development of a recyclable solid state hydrogen carrier for the safe storage, transport and generation of hydrogen at high pressure

Hydrogen Growth and Key Markets

Japan and Korea will be key future importers

Japan has ambitions emissions targets – Carbon Neutral by 2050 and 46% reduction in greenhouse gases by 2030

JAPAN:

Expected investment US110bn over 15 years Annual Revenue from H₂ in 2050 US2.5 trillion

KOREA:

Majors including, Hyundai, SK, POSCO, Hanwha and Hyosung have committed A\$46bn out of \$82bn public-private investment into H₂ economy by 2030

Hydrogen | Kotai Hydrogen Project

The project is designed to advance a breakthrough hydrogen transport technology into commercial reality

The fundamental science has been established by the team in precursor projects, which require further investment to integrate the science, engineering, and commercial aspects on a larger scale

The project involves the research, development and deployment of a new technology to export hydrogen as a powder. The powder is a salt called sodium borohydride that releases hydrogen when added to water

The project will focus on electrochemical production of sodium borohydride powder from sodium borate and various technical challenges to provide a circular hydrogen export value chain

- A proven solid state H₂ rich storage
- Transportable inert powder
- Solved in water to release H₂
- H₂ release process occurs at ambient temperate
- Senerates hydrogen at high pressure

Sodium Borohydride as a Hydrogen Carrier

Figure 1: Comparison of different methods of hydrogen export, costs are in USD from 'The Future of Hydrogen' report prepared by the IEA. Production of hydrogen through electrolysis uses 54 kWh per kg H₂ at \$0.0685 USD per kWh. The theoretical cost for NaBH4 is calculated using the same parameters but assuming electrochemical regeneration at 80% efficiency

Favourable Comparison

The Kotai Energy Method is cheaper, safer and regenerative

TSXV:**VLX**

Comparison of different methods of hydrogen export, costs are in USD from 'The Future of Hydrogen' report prepared by the IEA. Production of hydrogen through electrolysis uses 57 kWh per kg H_2 at \$0.0685 USD per kWh.

Project Achievements to date

Pathway to Commercialisation

Current Project Stage

GRAM-SCALE

KG-SCALE

TONNE-SCALE

High Pressure Release of Hydrogen

High pressure release of hydrogen

With the addition of a catalyst, hydrogen can **be chemically compressed** during the H_2 generation phase with pressure levels **up to 1,000 bar** possible

On-site, high pressure hydrogen

Process can generate high pressures on-site, for example, a vehicle fueling station could generate high pressure hydrogen requiring only a closed chamber

Utilising a recyclable catalyst

Using a catalyst that is readily available and doesn't deteriorate

Key Future Milestones

Funding Model & Technical Team

Technical Team

Prof Craig Buckley

The Australian expert on the International Energy Agency Hydrogen Implementing Agreement Technology Collaboration Program (TCP) Task 40 (Energy storage conversion based on hydrogen); Australian Executive Committee member on the IEA Hydrogen TCP

Ass. Prof Mark Paskervicius

Senior Research Fellow in the Fuels and Energy Technology Institute, focused on renewable energy storage and developing new materials for solid-state hydrogen storage

Dr Peter O Conghaile

Research Fellow at the Faculty of Science and Engineering Curtin University specialising in bioelectrochemistry. Dr O Conghaile is an electrochemist with a focus on fuel cell and sensor applications

Funding Model

Grant 1

Total Funding: \$1.85M Duration: 4 Years Remaining: 6 Months

 Australian Government

 Australian Research Council

Australian Research Council

Grant 2

Total Funding: \$1.7M Duration: 5 Years Remaining: 4 Years

Lake Pierre Lithium Project

Exploring for LCT pegmatites in lithium rich Quebec

Lake Pierre Lithium Project

Pegmatites in known lithium region

- · Pegmatites recorded in historic diamond drilling
- Never assayed for lithium
- Neighbouring properties contain LCT* pegmatites

Pilbara (Moolyella-style) mineralisation targets

- Granite stacked pegmatites of similar Archean age to Moolyella
 (Pilbara) are present
- · Regional scale structures are visible in aeromagnetics

Close to infrastructure

- The project is located approximately 50km from the port city of Havre Saint Pierre
- It is situated in a mining region with a nearby Rio Tinto Iron & Titanium mine
- There is a newly established hydroelectricity plant approximately 30km from the project

Uranium Potential

• The Turgeon Granite has been known for a long time as a potential host for uranium deposits of Rössing type. There is an interpreted uranium high in the northeast part of the Lac Pierre claims that will be further investigated through 2024

Lake Pierre Lithium Project

- Historic drilling in south-west of the project area only
 - High-resolution magnetics showing prominent Pilbara type granitic intrusions
- Strong north-west crustal structures visible in aeromagnetics
- Ground reconnaissance to occur during CY2024 to further enhance the potential of Lithium and Uranium within the permits

Lake Pierre Project Timeline

		CY 23		CY 24		
		Q4	Q1	Q2	Q3	Q4
Desktop Studies	Analysis of historical data to define potential Lithium bearing pegmatites					
	Analysis of historical data to define potential Uranium exploration targets					
Field Work	Ground reconnaissance of identified potential LCT pegmatites					
	Ground reconnaissance of identified potential Uranium exploration targets					

Our Environment, Social, Governance (ESG) Commitments

Environment

- Developing projects supporting the global transition to a net-zero economy
- Support government emissions reduction targets
- Identify and implement sustainable mining practises and materials traceability
- Responsibly manage environmental risks, impacts and opportunities

Social

- Contribute to local economic development through employment opportunities and engagement with local service providers
- Support community development initiatives through sponsorship
- Promote a diverse and inclusive workforce across all aspects of the business

Governance

- Maintain and promote ethical and responsible business conduct
- Strengthen corporate governance and risk management processes
- Disclose corporate ESG performance accurately, transparently and in a timely magner aligned with international reporting standards

Environment, Social, Governance (ESG) Planning

Velox Energy Materials will contribute to sustainable development by combining resources and innovation, we will advance the transition to a low-carbon future through transparent governance, genuine engagement and efficient use of resources

PHASE 1 – Materiality

Objective: Assess sustainability landscape to define project scope and priorities

Stakeholders and materiality

- 1. Project drivers and ambition
- 2. Stakeholder mapping
- 3. Materiality assessment

ESG governance

TSXV:VLX

- 1. Internal scoping and review of current policies and standards
- 2. Stakeholder inputs
- 3. Policy development

PHASE 2 – Strategic Planning

Objective: Establish current level of sustainability activities at Velox and future state ambition

Benchmarking

- Analysis of key strategic elements including strategy, mission and values, and ensure alignment with key governance structures. Agreement of sustainability ambition
- 2. Review of peer ESG and sustainability performance
- 3. Assessment of relevant global frameworks

Roadmap and strategy

1. Development of strategic ESG roadmap

PHASE 3 – Communications

Objective: Transparently communicate sustainability performance to stakeholders

Communication delivery

- 1. Data identification, collection and reporting, including goal & target setting
- 2. Alignment with external bodies/standards
- 3. Production of appropriate sustainability communications including
 - ASX releases
 - Corporate presentations
 - Velox website
 - Annual Report
 - Sustainability Report

Stakeholder map & material topics

Gap analysis & ESG roadmap

Communications on progress & performance

Velox Energy Materials is a diversified energy materials company focused on the global decarbonization initiative

TSXV:VLX

Why Invest in Velox?

Leading diversified energy materials Company with projects that the potential to **disrupt established markets**

Globally significant vanadium project in **Tier 1 QLD location** targeting a low-cost mine development

Exposure to a **grant funded hydrogen research project** with large scale global hydrogen storage potential

Lithium and uranium exploration in Quebec with **identified pegmatites** with a favourable geological setting

Highly credentialed team with corporate and operational **battery materials experience**

TSXV:VLX

Simon Coyle President & CEO scoyle@veloxmaterials.com.au +61 403 644 947

Andrew Rowell Australian Investor Relations andrew@whitenoisecomms.com +61 400 466 226